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NATIONAL ATVISORY COMMITTEE FOR AERONAUTICS

TECENTCAL MEMORANDUM NO, 1162

TUNNEL CORRECTION FOR COMPRESSIBLE SUBSONIC FLOW¥

By A. V. Barenoff
- SUMMARY

This report presents = treatment of the effects of the tunnel
walls on the flow velocity and direction in & compressible medium
at subsonic speed by an epproximate method. Solutions with numerical
calculations ere given for the rotatlonelly symmetric and two-
dimensional problems of the flow past bodies, as well as for the
downwash effect in the tunnel with circular cross section.

1. SYMBOLS®

b wing span of the ’mod.e.rlv wing
T circulatioﬁ
h half of the tunnel height s two-d;mensional' éase
J profile volume of the model, two-dimensional ceape
i Mach number équared in the und.ié’curbed flow

variable of ‘integration
R' tunnel _rédius
o varisble of i'n’cvegra’cion
T volume of the model, cese of rotational symmetry

*"Zuy xs“age der Kanalkorrektur béi ¥ompressibler Unterschall-
»stromung, FB 1272, Zentrale fir -wissenschaftliches Berichiswesen

uber Lu.ttmhrtforsohung (zwB) Berlin-Adlershof, July 5, 19%0.
1This list only conbtains symbols eppearing in the final results

~(equations (17), (25), (31), (32), (41), and (L2)). Symbols used

in intermediate caluulations are expl&lneo. at the pOJ.nt of their
introduction. : .
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U flow vélocity
u increased velocity at the tunnel wall
u*  additional axial velocity (due to the constriotion of the stream)

w¥  additional upwash velocity (due to the constriction of the stream)
&, p, or &, n ere the coordinetes for the case of
rotetional symmetry or two dimensions, rendered dimensionless
by division by R or n. =

‘9. GENERAL STATEMENT OF TEE PROBLEM

The effect of the tunnel walle on the flow around a body
acquires increased significance at high velocitios as much through
compressibility as through the often unfavorable ratio of model
dimensions to tunnel dismeter. In this, the question concerns
the effects on the flow speed and direction, the first case of
which is, possibly, that of a model, symetrically suspended, in
a flow where there is zero 1ift, while the cecond case is that
of & circulatory flow past & thin profile. The differential
equation for compressible subsonic flow should be teken ag a basis,.
here, in the approximation form named after Prandtl. If @
represente the velocity potentiel, in cylindricel coordinates this
equetion, then, reads: :

329

3% . 130, 1 029 _uy 929 .
&?+}E+§a$‘~+(l 1) S =0 (1)

This holds for a so-called, near parzllel flow, that is a
uniform principal flow in the direction of the x-axis on which
ig superimposed a flow of ordinarily smell velocityy.

Now let & be the potential of the flow in the medium,
unconfined, and ®% <the potential of the adéitional flow appearing
because of the effects of the tunnel walls. & certainly satiefies
the differential equation (1) in the entirc range of the interior
of the tunnel as a good epproximestion. The same cannot be said
of @ because in the vicinity of the body the deviations from the
principal flow can be of the same order of magnitude as the
principal flow, iteelf. The guentity, @, will, however, ceitainly
do at a distance from the body, that is, in the neighborhood of
the tumnel well, possibly, Just as well as ® % of equetion (1).
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Now since the connection between & and ®* consists of the
fact that '

—g;(@ +0%) =0 : (2)

at the tunnel wall, the & desired is touched only slightly

by the uncertainty in the potential @ in the vicinity of the

body as far as it succeeds, that is, in giving solutions of

equation (1) of such a kind which describe the action of the body,
which the flow moves past at a great distance from it with

sufficient accuracy. First of all, in the following the rotationally
symnetrical and the two-dimensional problem’ for the flow past a
model will be treated, for which ascertaining a correction factor

for the flow velocity or its Mach mumber is the object of this
investigation. In the conclusion, the problem of downwash correction
factor 1s handled in connection with that. In a formal sense the
method in all three cases depends on the same artifice (compare
reference 1), namely, in that the condition at the edge (reference 2)
is satisfied, first of all, within a finite longitudinal section 21
of the tunnel cylinder, and the limit 1-—%® ig taken cnly then.

The solutions all appesar, therefore, in the form of Fourier integrals.
It should be mentioned that in the two-dimensionsal case the methcd

of reflection of the singularities (reference 2) leads to a solution
that is more convenient for the purpose of numerical calculation.

3. EFFECT OF THE TUNNEL WALL ON THE FLOW PAST BODIES

(CASE OF ROTATIONAL SYMMETRY)

It is logical to describe the disturbances that a body past
vhich there is flow, causes at some distance from itself by a
superposition of sources and sinks in which the source and sink
potentlials satisfying equation (1) are readily expressible. The
discussion is limited, &t this point, to the case where the body
is small enough in comparison to the tummel radius so that its
action can be replaced accurately enough by that of a single
dipole. The potential of such a dipole with the x-axis as its
axie of symmetry, figure 1, reads:

o} =‘El£ x :
b Va2 + (1 - u)r2 3




Regarding the meaning of the dipole moment m,., arguments
will not be presented till section 5.

For the additional potential &%, which gives the action
of the tunnel walls on the flow, the following estimate is made:
o* ~ P(r) X(x)

with which the following equation derives from (1)

v, L p - X
P+ =P 4 (1 - ) Pg=0

: First of all, to satisfy che boundary condition (2) only
for [x|<1, it is necessary to se%

XH + 02 X =

in which

[

I
Nipi‘
1=
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(%)

()

k=1,2,3.......

It is readily seen, that because of (3) end (2) x appears to

an odd power in ®* sgo that only

X = in}—{l;—{

‘enters in as a solution of (5). On account of (5) equation (4)

transformas to

o,
P"+%Pf - (1 - ) E;%—P 0

(6)

(7
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Ut

The solution of this so-called Hodified: Beagel’s differentia.l
equation is

-1, (ﬂlﬁ“{r) (@

where I, 1is the modified Beseel function of the filrst type and
zero order. The corresponding function of .the second type does
not enter into the question because of the requirement of :
regularity for ®¥. The general solution develops from (6) ana
(8) by summation over all integral values of k. With the use
of the dimensionless quantities

x r
é’ﬁ:p""ﬁ:}\-:}% ' ’ (9)
1t reads

q§+= Q 3 k"p "é (10)

The dofinition of the coefficients ck follow from the

boundary condition (2). To begin with, for p =1
g
N k kn l-punm
\ck"}ilIo' (\fl -ukﬂ> sin §’=3 L or
/ A A © hR® 5 5
P | o VERsa1 -

Expanding the right-hand side in a Fourier series in &, by
comparison of coefficients, after some intermediate calculation,
the following is obtained

')"coslg—t-o—('da.
5 A .
V1 - umr)‘ \/“2“"'""""“3 ’ N
Lo +1 -y (12)

Cx =, ps

2 : .
e ()

(11)
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Now substituting (12) in (10) and teking the limit A— the
following is obtained

oy - UL - umr/ sin (qs) I, (V1 - 4 gp)dg [ QOS(qaLda
(o]

2n® RO I (Vi-uaq) Jo VEr1-w?

(13)

The inner integral in this cen be put in a form where it is
expressible by a modifled Bessel!s function of the second type
and first order. This is, namely,

/m cos(an) s a4Vl -wa)
[¢]

Va2 v 1 -p3 Vi -u

where K, 1is the function mentioned. Fquetion (13) reduces,
by means of this, to

oo
oy, sin(q® I, (V1 -1 go) g Ky (V1 -ua) dg
on°R? . 1, (Vi-wa)

O+ =

(1k)

A new variasble of integration can be written for \/.a. “H g
here (represented again by q in the following) and the expression

_ §>I (ap) Dl ! (15)
21@33\/"—' / AW @

¥

is obtained for the axial additional velocity. In wind tunnels,
there is the possibility of finding the velocity at the tunnel wall
by moasurement of the gtatic pressure at the tunnel wall. The
increased veloclty there is computed from the two potentials (3)
and (14) for & =0 as .

. ] ( ) —-]
m. x f 97Ky (q
u= , D — - T )" d 16)
v 2R3 1_/1 N u3 5t o e I,(a) 4 (
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Eliminating the dipole moment in (15) with the aid of (16),
then st the position of the body (& = p = 0)

= 0.45h7 . (17)

is obtained for the correction-factor velocity where it can be
ascertained by measurement.(See section 7 for the mumerical
calculation of the factor.) The relationship (17) is independent
of Mach number.

4, FFFECT OF THE TUNNEL WALL ON THE FLOW FAST BODIES
(Two -Dimensional Case, see Fig. 2)

In the two-dimensional case the differential equation for the
velocity potential reads

2 o
o°% (1-u)a® 0 : (18)
&2 dx°

A solution of this equation, which is associated with the
dipole, reads

)
g x
Tox x? 4 (1 - p)ye

(19)

First of all, the moment my is simply regarded as given; later on,
its relation to the size of the body and to the Mach number will

be discussed further. To fulfill the boundary condlitions at the
upper and lower tumnel wall (y = th) requires the introduction

of an additional potential &% which likewise should setisfy
equation (18).

Through the statement

d* ~v(y) x(x)
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it is easy to get a general solution. Its form consistent with (19)
and the boundary condition reads ~

. o
cp* .2 e cosh( 1-p —g) sin k__%:_c_ (20)
).+

To satisfy the boundary conditions, exactly the same procedure
is to be observed as in the preceding section. After taking the
limit as 17> and by applying the dimensionless formulas

y 1
5= A=y (21)

s
n
AR

the expression
o

mg Vi-n sin(q® cosh(V1 - pa)dq / cos(qa)da
°h o ot (V1 -pnq) U

¥ = (22)

o A+ 1 -4

is obteained.

On account of

los]
/ cos{qa) da i -q\VIp
o

e
oc2+l—u 2V 1 - B

after the introduction of a new varisble of integration finally

becomes
f cosh{an)dq .'
% =
wth \/l -u /l - %% - 1 (23)

The axiel additional velocity now reads

* sh
) nh2(1 . u)/ (\/1 =) (an

qdq
e - 1

(24)
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The increased velocity at the wall (& = 0, n = 1) is
imtroduced again. The correction velocity at the point (&= 1 = 0)
is then ' , ' . .

. ug* =‘}‘7 o (25)

vhere U 1s the increased velocity measured at the wall.
5. DEFPENDENCY OF THE DIPO,LE MCMENT ON BODY VOLUME AND MACH NUMBER

The dipole moments m,. and me introduced in equations (3)
and (19) ehould not be set in relation to the volume of the body
that the flow passes any more. £ince those potentials only contaln
a single parameter, the volume of the body is the most suitable
quantity, in fact, for the definition of this parameter. The
Tlow past the body could be introduced as a series of dipoles that
has set to work In its interior. ZEach individual dipole signifies
a certain displacement of the outer flow, which ig obtained most
easily with the aid of the flow function. Therefore, the relation
between the potential and the flow function must be set up, first
of all.  In its exact form it reads for the case of rotational

gyrmetry

P 3% 3y
—rrpo dr - ox

p 3 oV (26)
r— — =

po O or

The equations (26) are not linear on account of the dependency’
between the density p and the vel g:ity,. however, - they can be
linearized into the following form:

L 90 %
or " ox _
(262)
el _09 _ov¥ |
rax>+ruQJ ox —ar'

N e -
' The author is obliged to Dr. Ing. B. G&thert for pointing this out.
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The approximate form (26a):is equivelent to the differentisl
equation for YV obtained: from (1) f&¥ - ® -the cese of -‘rotational” = -
symmetry end & corresponding equation for V. The flow function = -~
of a dipole in & uniform flow reads, therefore, in accord with (26a)

s ore (1 - WmetL- o g8

-T \/x2+(l-7u)r33

(27)

By setting VW equal to O the contour of the body past which
the stream flows 1s obtained and from this tts volume/T. It is™

CqHB

w o

(28)

so that in this case the moment is, therefore, independent of the
Mach number. For the two-dimensional case the relations corresponding
to the system (26a) mey be written down readily. From the flow"
function satisfying them '

(1-wme
2 x2 4 (1 - wy°

¥ =Uy - ,. (29)

the volume of the body past which the stream flows (volume within
surface of the contour past which the streem flows) is obtained as

j? lm VI ’l;L-
1o (30)

From this is obtained the fact that the dipole moment in the
two-dimensional case is dopendent on the Mach number. This result
is in accord with the so-called Prandtl's rule (reference 3). The
objJection could be raised against this consideration that it
investigaetes the flow past & body teking as a basis an individual
dipole de facto, which does not satisfy the Prandtl condition of
slenderness. It might, therefore, have been more acceptable to
represent the body possibly by assuming & distribution of sources
and:sinks along its axis. Now if this is done, then in the extreme
cagse of & very slender body admittedly the same dependency of
the product of source strength by source-sink distence on the
Mech mumber is obtained as that for the dipole moments in . .

L T

Ce -
i BN
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equations (28) end (30), while on the other hand the mumerical
factors change; they become egual to 1 in both cases, that is

. ng (28a)
3 B 2 :,J_l - ‘f | ' (30a)

The dipole moment for the case of rotationsl symmetry calculated
from (28) wowld then be, accordingly, 50 percent’. and that for
the two-dimensional case according to (30) fully 100 percent
larger then that from the second consideration. Since the bodles
that appear vractical. ag models are slender, as a rule, the
adventage belonge rightly to the second conslderation in every cése.

Therefore, intrcducing (28a) and (30e) into (15) or (24), now,
the following is obtained

Ut ‘ Q.EKJ_(Q)
u¥ =- { coc ( 4 \IO(QP)—

dg (31)

e

27(233 \ 1 - ¥ 4/0

for the cage of rotational symmetry and

(o4}
[SH]
_ qf q
V¥ = — coa| 2% Ycesh(an) dq (32)
nh™ V1 - u3‘/; (Vl - l) o?d - 1

for the two-dimensional one. Af the position of the body, therefore,
for £=p=0C or & =1 =0, the following relations are obtained

a ¥ = 01268 U7
\/T -p °R3
% UJ _ 0.1309 I_T_._j

U¥*=. i i

© api-a3bf T op 3

(31e)

(32a)
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Tt 1s noteworthy that the factor in fraont of the integral in both
cages (equations (31) =nd (32)) shows tho same dependency on
the Mach number.

6. DOWNVASH ANGLE CORRECTION IN THE CLOSED TUNNEL AND IN THE OPEN JET

In the two-dimensional casge the circulatory flow furnishes
no contribution %o the angle-of-attack correction fector at the
position of the body. On that account only the three-dimensional
problem in the tumnel of circular cross section is handled in the
following. For this the mction of the model cen be approximated
by & horseshoe vortex of infinitely small spen. I instead of
the velocity potentiel @ of such a vortex its acceleration
potential @ is introduced, certaln further adventages result,
in particular, the posgibility of keeping the method of solution
applied up till now.

The lineerized wolation between @ and ¢ reads, (reference 4).

_17E , (33)
5 'U‘Lo Pax

For that very reascn @ is also & solution of the differentiel
equation (1). The Liorseshoe vortex of infinitely cmall span
corresponds to the acccleration potential of & dipole with 1ts
axis in the direction of the z-axis (fig. 3); this potential
reads '

U (1 -u) z

P = . — (3k)
b Va2 + (1 -0 ° 29 3
The appropriate veloclty potential cen be ascertaincd from
this with (33). It rcads
o'z [ x
¢ - = | 1 (35)

=3 - z . - = ) +
hft(;y'2 + 27) E \/;:2 + (2 - w) (y© + 27) ]

For given [ the Mach number excrts no influence on the
flow, this holds as mmelh in the plene of the wing (x = 0) as
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also infinitely far behind the wing (x-°). At the seme tire it

ie seoen that & and all cross componenis of the velocity ot an
infinite distance have double the value compared to that

at thic position of the wing. The tunnel correction factor at an
infinite distance 1s valid, therefore, at the position of the wing,
too, if it is multiplied by one-helf. The additlonal pobtential of the
flow coming about through the action of the Jet boundary, at an
infinite distance, 1s

o =tRz (36)
2R »

in which the uppor sign holds for the closed tunnol and the lower
gign for the open Jet. ,

Now .the general three-dimensional problem is to be treated.
At this point an additionel potentiel P ¥ ig introduced which
allows the boundery conditione at the edge of the Jjot to be
satisfied. It is easily ceen that the boundery conditions(2) '
are also velfd for the accelesration potential:

(p+ o) = (37

jC/'QI

The boxuidery condition for the open Jet is obtained s
® +@* =0 4 (38)

The courses of calculetion for the open Jot and closed tunnel
run off very much alike. It corresponds, moreover, step by step,
0 the method doscribed in sections 3 and 4. An abbrevieted exposition
will do here, therefore, in which only the closed tunnel is taken
up, Tiret of ell. :

On account of (34) the following is eppliod

P* _ cos & P(r) X(x)
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The general solution reeds, after making use of (9).

oo}

< ket k
¢* = ¢O0S8 é{eop 4-\\ Cy CO8 —— Il V31— u “é)
k=1

L

(39)

where I; 1s the modified Bessel's function of the first type and
first order.

The coefficients cy are determined from the boundary condi—

tions (37), vhich are satisfled only for [gl < A, If the

limit A—> is teken, the final solution is obtained which after
application of the integral rerresentations for the modified Bessel's
functicns of the second type takes the form

- ' K,(qa) — aK,(q)
g = —rD 208§ co8 e T, (gp) — 2 4 o)

27°R2 VI—=u Jo _ 1 -y Il'(Q)

From this with the aid of (33) the additional upwash component
is obteained

5 Y 2
a“K,(a) - o, (q)
W oo L \’l_“ do cos (qo) 2 1 4q (k1)
4neR? I,'(a)

- 00 o)

The corresponding upwash component in the open Jet is

2
______ % 1K (q)
W o= — L Vi-pogq cos (qo) —t dq (k2)
- o :

The results (41) and (42) confirm the observatiocn already mede,
heretofore, that there is no effect due to compressibility at the
position of the wing and 2t an infinite distance. In the remainder
the same additional upwash prevails at a position £ behind the
wing as would be present in incompressible flow at the position

TTT::::. Since the amount of the correction velocity increases
monotonically with increasing distance behind the wing in the open




NACA T™ No, 1162 15

Jet and likewise increases least in the closed tunnel within a
range comparable to the tunnel radius, the compressible flow,
therefore, has an ebsolutely larger correction factor.

7. NUMERICAL RESULTS

In the following the results of seoveral numerical calculations
shall be compiled and discussed in detasil. The axial velocity
u* for the case of rotational symmetry is best calculated from
formula (15) or better still (31). For this purpose the integrel
o 0,
1 » 1Ky (@)
F) = —5/ cos(ad Io(gp) ——— dg (43)
2n° Jo I;(q)

is evaluated numerically by Siinpson's_ rule ‘see table 1).

TABLE .- VALUES FOR F. (SEE (43))

p
g
0 0.25 0.5 | 0.75 1.0
0 0.1268 0.1298 0.1399 0.1604 0.1996
25 J197 | mweeem | ememee | mmmee- L1877
5 1056 | mmmmee | mmmeee b aeeea 1242
NP 0853 | mmeem | mmmeee | eeaee L0710
1.0 20652 | ~mesen ] ieemme | eeeees .0409
1.5 0345 | cmmem | memmee  ceeeee .0199

Next, figure U4 presents the variation of the additional
velocity wu* along the tunne)l radius in the plane X = 0. Since
the Mach mumber in this case only appears in the factor in front

of the integral, it is sufficient to plot only \/1 -p 553 .

It is seen that the additional velocity toward the tunnel e-ge
taekes on poesibly 60 percent more. The assumption ~f an additional
velocity (compare reference %), congtant over the cross section
does not prove correct, therefore.
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R3 u¥

Figure 5 shows the variation of r E— along the twnel
axis {r = 0).

For the velocity at the tunnel wall, from a rational point
of vlew, not u¥, but the quantity U - increased by the ‘
displecement flow, ig plotted for it is certainly this increased
velocity U which is accessible for direct measwrement. The
variation of 1§ a8 e function of x appears in figure 6. For
the two-dimensionul case (equation (32)) it is necessary to
evaluate the integral

l/ ) (q€) (an) 2 (1k)
Fp = cog(q<) cosh(iyn) ———— 4
2 x o 2 _ 1 -

The numerical values obtained by Simpson!s rule are in table 2.

Figures 7 and & show the variation of the additionel velocity
u* elong the y-axis (x = 0) end along the x-axis (y = C).
FPigure 9 gives the induced velocity at the tunnel wall.

The downwash correction factor for the closed tunnel should
be represented by means of the upwash w  &according to equation (41).
In integrating with respect to o the unsuitable integral can be
avolded by using the following relation in accord with (36)

O :
/ © el - ey ()

/ do /  cos(qo). dg = n
0 Jo - ’

11’(61)
Then
W= ;:% (1+x) | ,_ (us)
where g
Kg=—3§ o do /mcos(qo*) 1R - gl da  (L46)
o Jo Iy '(a)
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e = 0, . . 5
\/l -
in which the integral has again been evaluated by Simpsonts rule.
(See table 3.)

This function has been tabulated for

The curve for the variation of kg 1s shown in figure 10.

The urwesh for the open jet is

bT
Whom e (14 K) - ()
YaR®
by which oy
1 [ Viw © Q% (a)
Kp = : do | cos(qo) dg (48)

Table 4 contains the numericel values.

The curves are presented in fizure 10. A comparison with
the varietion calculated by I. Lotz (refevence 1), for w = O
und a wipg of finite wing span shows good agreement in the case
of the open Jet, on the other hand somewhat larger deviations for
the closed tunnel, without assigning a reason for this different
behaviour. On the other hand the veriation of both curves of figure 10
agree very well with the results calculated by Teni and Taima,
(reference 5) using the Burgers method.

SUMMARY

The prcblem of the effect of the limitation of the jet on
the flow past a model is handled by proceeding from the Prandtl
linearization of the differential equation of the compressible
mediwm. The disturbance which the model causes near the well,
at the same time, is reprecented, approximately, by & dipole or
horsechoe vortex. The boundary-value problem arising in this,
at the limit of the Jjet is solved exactly to learn the additional
flow due to the effect of the edge of the stream. The solutions
are evaluated numerically, to the extent that they ere of interest.

Translated by Dave Feingold
National Advisory Committee
for Aeronsutics
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TABLE 2.~ VALUES FOR Tp (SEE (L))

n
g
0 0.25 0.5 0.7 1l.C

C 0 0.1309 | 0.1350 | 0.187 | 0:17TL | 0.2335

25 1283 | mevmes | mmmeen | e .2239

'S R R e e B .1696

75 V1016 | mmemme | emeeee | s 097k
1.0 N o1SAIC T (RSTR P e .0637
1.5 0539 wmmmme [ memees | memees .0323

TABLF .- VALUES FOR Kg (SEE (46))

\/1 “ M Kg
0 0
.2 J19Th
i .3829
.8 .6831
1.2 L8726
1.6 -9735
2.0 1.0198
3.0 1.0392
5.0 1.0208
T/ABLE 4.- VALUES FOR kp (SEE (48))
(?
Ji-w K
0 0
.2 .1571
A . 3057
.8 5531
1.2 L7196
1.6 6183
2.0 L8730
k.0 L9677
6.0 .9856
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r
‘ Tunnel wall
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D—u—> l r‘T——u
O

l Body of volume
T 1in the flow

I
1\\\\\\\\\\1\\\\\\\\\\\\\\7

Longitudinal section of tunnel

Tunnel cross section

Figure 1.- Designations in the case of rotational symmetry. (x-axis is the
axis of symmetry).
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Figure 2.- Designations in the two-dimensional case.




NACA TM No. 1162

Fig. 3

Figure 3.- Horseshoe vortex and axis.




NACA TM No. 1162 Figs. 4,5
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Figure 4.- Axial additional velocity in the plane X = 0. Case of
rotational symmetry.
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Figure .- Axial additional velocity along the tunnel axis. Case of
rotational symmetry.




Figs. 6,7 NACA TM No. 1162
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Figure 6.- Induced velocity on the tunnel wall. Case of rotational symmetry.
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Figure 7.- Axial additional velocity in the plane x = 0. Two-dimensional
case.




NACA TM No. 1162 Figs. 8,9
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Figure 8.- Axial additional velocity in center of tunnel for two-dimensional
case,
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Figure 9.- Induced velocity on the tunnel wall for the two-dimensional case.




Fig., 10 NACA TM No, 1162
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Figure 10.- Downwash correction factors for closed and open tunnels.




